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Abstract

With the growing demand for automation in fields such as architecture, real estate, and digital twin technologies, the ability to
efficiently convert 2D floorplan images into accurate 3D structural models has become increasingly critical. Traditional CAD
(Computer-Aided Design)-based approaches, while precise, often lack scalability and adaptability in dynamic or large-scale envi-
ronments. In response, recent advancements in machine learning have opened new possibilities for intelligent 3D reconstruction.
This short review explores these developments, surveying key machine learning pipelines, benchmark datasets, evaluation metrics,
and real-world applications. It also addresses persistent challenges including generalization, occlusion, and dataset limitations.
The paper highlights promising directions such as diffusion models and foundation models, that aim to overcome current barriers
and shape the future of automated 3D modeling from 2D sources. This work contributes to a clearer understanding of the current
landscape, identifies gaps in existing approaches, and outlines strategic pathways for future research in data-driven architectural
modeling.
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1. Introduction

The conversion of two-dimensional (2D) floorplan images into three-dimensional (3D) structural models has
emerged as a critical area of research and development in recent years. This process underpins various domains, in-
cluding real estate visualization [1, 2], indoor navigation for robotics, virtual and augmented reality (VR/AR) [3, 4],
and the creation of digital twins for smart cities. Traditional approaches, such as computer-aided design (CAD) tools
and manual reconstruction, are often labor-intensive, time-consuming, and lack scalability across diverse architectural
styles and datasets [5].

With the rapid advancements in artificial intelligence, machine learning (ML) techniques have emerged as promis-
ing alternatives for automating 2D-to-3D conversion. Convolutional neural networks (CNNs) [6], generative adver-
sarial networks (GANs) [7], recurrent neural networks (RNNs) [8], and transformer-based architectures [9] have
enabled researchers to develop systems capable of reconstructing 3D geometry and textures directly from 2D floor-
plans [10, 11]. These systems support diverse applications from property marketing with interactive 3D tours to
indoor scene understanding for autonomous systems and immersive VR/AR environments.

Despite these advancements, significant challenges remain. Floorplans often lack depth information and may ex-
hibit occlusions or ambiguous elements, complicating the reconstruction process [12]. Generalizing ML models to
handle diverse architectural conventions and noisy or incomplete input data remains an open research problem. Fur-
thermore, computational constraints and the demand for real-time performance pose additional barriers to widespread
deployment [13].

The objective of this study is to provide a comprehensive review of recent machine learning approaches for con-
verting two-dimensional (2D) floorplan images into three-dimensional (3D) structural models. Specifically, the paper
aims to:

• Synthesize academic and applied research contributions on machine learning approaches for 2D-3D floorplan
conversion;
• Identify core machine learning techniques used in real-world applications such as real estate visualization,

robotics, and digital twins;
• Evaluate commonly used benchmark datasets and metrics for performance assessment;
• Discuss major challenges including input ambiguity, architectural diversity, and computational limitations;
• Propose future research directions including emerging techniques like diffusion models and foundation models.

The remainder of this paper is organized as follows: Section 2 details the research methodology used for identi-
fying and analyzing relevant studies. Section 3 discusses core machine learning techniques for 2D-to-3D conversion.
Section 4 explores major application domains, while Section 5 presents current challenges and limitations. Section 6
provides an overview of the explored techniques and models explained in the paper. Section 7 outlines future research
directions, and Section 8 concludes the study.

2. Research Methodology

This literature review follows the PRISMA 2020 framework [14] to investigate machine learning techniques
for converting 2D floorplan images into 3D structural models. The search strategy queried six primary databases
(Google Scholar, IEEE Xplore, ScienceDirect, Springer, MDPI, arXiv) and two additional repositories (ResearchGate,
TheCVF Open Access) using Boolean operators and keywords including ”2D floorplan to 3D model”, ”floorplan 3D
reconstruction”, ”generative models for architectural modeling”, and ”neural rendering”. The search covered peer-
reviewed articles and preprints published between January 2020 and July 2025. An initial corpus of 89 records was
retrieved. After removing duplicates (n = 8) and applying automated filters (n = 15), 66 records underwent title and
abstract screening. Studies focusing solely on hardware implementation or traditional CAD workflows were excluded
(n = 18). The remaining 48 articles were assessed for full-text eligibility, with 15 excluded for insufficient relevance
to ML-based 2D-to-3D conversion. Ultimately, 33 studies were selected: 22 presenting novel ML architectures for
floorplan-based 3D modeling, 8 providing comparative evaluations, and 3 contributing foundational techniques or
datasets. Figure 1 shows the PRISMA flowchart.
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Fig. 1. PRISMA flow diagram for systematic literature review process

3. Machine Learning Techniques for 2D-to-3D Floorplan Conversion

3.1. CNN-Based Approaches

Convolutional Neural Networks (CNNs) have been widely adopted for 2D-to-3D floorplan conversion due to their
strong spatial feature extraction capabilities, as shown in Eq. (1)–(3).

( f ∗ x)(i, j) =
⌊k/2⌋∑

m=−⌊k/2⌋

⌊k/2⌋∑
n=−⌊k/2⌋

f (m, n) · x(i − m, j − n), (1)

where f (m, n) represents filter weights, x(i, j) is the input feature map, k is the kernel size, and ⌊·⌋ denotes the floor
function.

y(ℓ+1)
i, j = σ

((
f (ℓ) ∗ x(ℓ)

)
i, j
+ b(ℓ)

)
, (2)

where y(ℓ+1)
i, j is the output feature, σ is the activation function, f (ℓ) represents learned filters, and b(ℓ) is the bias term.

ypool
i, j = max

(m,n)∈W
xi+m, j+n, (3)

where ypool
i, j is the pooled output,W represents the pooling window, and xi+m, j+n are input values within the window.

3DPlanNet achieves 95.3% wall detection accuracy [2], while Cambeiro Barreiro et al. achieved IoU scores of 0.81
on CubiCasa5k [10]. Fu and Makino employed U2-Net for 15-second 3D mesh reconstruction [3], 3DPlanNet extends
standard CNNs through ensemble learning with rule-based heuristics using only 30 training images.

3.2. GAN-Based Approaches

Generative Adversarial Networks enable realistic 3D synthesis from 2D floorplans, as shown in Eq. (4)–(5).

min
G

max
D

V(D,G) = Ex∼pdata

[
log D(x)

]
+ Ez∼pz

[
log

(
1 − D(G(z))

)]
, (4)
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where V(D,G) is the minimax value function, G is the generator, D is the discriminator, x denotes real data, and z is
the latent vector.

LG = −Ez∼pz

[
log D(G(z))

]
, (5)

where LG is the non-saturating generator loss and D(G(z)) is the discriminator’s probability for generated samples.
Plan2Scene integrates texture generation with Graph Neural Networks [1], while Pix2Vox++ achieves IoU scores

of 0.84 on ShapeNet [15]. Plan2Scene modifies standard GANs by implementing Graph Neural Network propagation
for texture synthesis on unobserved surfaces.

3.3. Transformer-Based Approaches

Transformers model long-range dependencies in floorplan conversion, as shown in Eq. (6)–(7).

Attention(Q,K,V) = softmax
(

QK⊤
√

dk

)
V , (6)

where Q, K, V are query, key, value matrices, dk is the key dimension, and softmax(·) normalizes attention weights.

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), MultiHead(Q,K,V) =

[
head1; . . . ; headh

]
WO (7)

where headi is the i-th attention head, WQ
i , WK

i , WV
i are projection matrices, and WO combines information from all

heads.
Zheng et al. achieved 68.5–80% geometry win rates using rectified flow Transformers [11], while Para et al. out-

performed StyleGAN in perceptual studies [16]. Zheng et al. enhance transformers through masked rectified flow by
treating partially completed scene latents as generation constraints.

3.4. Hybrid Methods

Hybrid approaches combine multiple paradigms, as shown in Eq. (8)–(9).

ht = ϕ
(
Wxxt +Whht−1 + b

)
, (8)

where ht is the hidden state, xt is the input, Wx, Wh are weight matrices, and ϕ is the activation function.

zt = σ(Wzxt + Uzht−1), rt = σ(Wr xt + Urht−1),

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)), ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t,
(9)

where zt, rt are update and reset gates, Wz, Wr, Wh are input weights, Uz, Ur, Uh are recurrent weights, and h̃t is the
candidate state.

3DPlanNet created over 110,000 3D models [2], while I-Design integrated GPT-4 agents with CLIP embed-
dings [17]. Hybrid methods offer flexibility but inherit individual component challenges.

4. Applications of 2D-to-3D Floorplan Conversion

The conversion of 2D floor plan images into 3D structural models has found significant adoption across multiple
domains, with ML techniques enhancing automation, scalability, and user experiences.

4.1. Real Estate Visualization and Marketing

The real estate industries increasingly leverage ML-based 2D-to-3D conversion for interactive property showcases.
Plan2Scene [1] transformed residential floor plans into realistic textured 3D meshes using graph neural networks,
achieving superior realism in user studies despite limitations in semantic segmentation and room type assumptions.
Similarly, 3DPlanNet [2] combined deep learning with rule-based heuristics, achieved 95.3% wall recognition accu-
racy while scaling to generate over 110,000 3D models, though requiring manual corrections for complex cases.
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4.2. Building Information Modeling (BIM) and Digital Twins

ML approaches enabled automated creation of semantic 3D models for BIM integration. Barreiro et al. [10] pro-
posed a framework converting legacy 2D plans into IFC-compatible 3D BIMs using ResNet and Feature Pyramid
Networks, achieving state-of-the-art IoU scores of 0.81 for masks on the CubiCasa5k dataset. However, dataset in-
consistencies and reproducibility challenges persist across the field.

4.3. Virtual and Augmented Reality Applications

VR/AR applications benefited significantly from 2D-to-3D conversion for immersive experiences. Fu and Makino
[3] developed a VR system using U2-Net for semantic segmentation, reconstructing virtual houses in approximately
15 seconds per floorplan. While effective for interactive exploration, current approaches showed reduced accuracy
(76.7%) for complex layouts and require high-quality input images.

4.4. Urban Modeling and Entertainment

At larger scales, ML techniques reconstructed urban layouts and generated virtual worlds. Zheng et al. [11] syn-
thesized coherent 3D towns from single top-down images using rectified flow transformers, achieved 92% geometry
win rates in user studies. In entertainment, Persistent Nature created unbounded 3D natural scenes from single-view
photos [13], though computational intensity remains a limitation for real-time applications.

5. Challenges and Limitations

Despite significant advancements in leveraging machine learning for 2D-to-3D floorplan conversion, several chal-
lenges and limitations persist across current methodologies.

1. Data-Related Challenges: Existing datasets often lack diversity in architectural styles, making it difficult for
models to adapt to non-Western floorplans with fundamental structural differences. Traditional Japanese designs
feature flexible tatami-mat room divisions with sliding panels that create fluid spaces contradicting wall-detection
assumptions. Chilean buildings show non-uniform wall systems with complex cross-sections, while traditional
African compound structures feature circular or polygonal rooms connected by outdoor pathways, challenging
rectangular room assumptions inherent in current datasets like RPLAN [18] and LIFULL [19].

2. Model Limitations: CNN-based methods struggle to capture long-range spatial dependencies, leading to seman-
tic inconsistencies in complex layouts [20]. GAN-based approaches suffer from training instabilities and mode
collapse, resulting in artifacts and the loss of fine structural details [1, 13]. Transformer architectures introduce
high computational overhead and memory requirements, restricting their scalability despite promising global
context modeling capabilities [11].

3. Generalization and Semantic Consistency: Several methods assume fixed room types and standard architec-
tural elements, limiting applicability to diverse building types. Plan2Scene requires predefined room-image cor-
respondences and handles only limited surface types per room [1]. Hybrid approaches combining deep learning
with heuristic rules may fail in corner cases where handcrafted constraints conflict with learned representations.

4. Computational and Deployment Challenges: High-resolution volumetric reconstruction demands substantial
GPU resources, as observed in Pix2Vox++ and Persistent Nature, which require multi-GPU setups for training
and inference [15, 13]. This computational burden poses barriers to real-time applications such as interactive
VR/AR systems, while integrating ML pipelines with rendering engines remains an open engineering challenge.

6. Comparative Analysis of State of the Art Methods

Table 1 provides a comprehensive overview of recent advances in 2D to 3D scene reconstruction and generation,
comparing methodologies, results, and limitations across different approaches.
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Table 1. State-of-the-art in 2D to 3D Scene Reconstruction and Generation
Ref. Purpose Methodology Results Limitations Hardware
[1] Convert residential floor-

plans and interior pho-
tos into textured 3D mesh
models

6-step pipeline: Floorplan
vectorization, 3D geometry
construction, object place-
ment, photo rectification,
texture generation, GNN
propagation

In Plan2Scene’s case, User
study shows superior re-
alism and accuracy over
baselines

Semantic segmentation er-
rors, lighting issues, lim-
ited to 3 surface types

PyTorch + PyTorch Geo-
metric, GPU (V100/A100)

[2] Generate 3D vector mod-
els from 2D floor plan im-
ages using ensemble meth-
ods

Hybrid approach: Pattern
recognition, object detec-
tion (TensorFlow API),
node/edge generation, plan
scaling

Wall accuracy: 95.3%,
Junction accuracy: 92.2%,
Generated 110k+ models

Manual correction needed,
weak object detection with
minimal training data

3DPlanNet experiment’s
hardware : i7-875H
2.20GHz notebook with
GPU

[10] Automate 2D floor plan
digitalization into seman-
tic 3D BIM models

ResNet backbone, FPN seg-
mentation, Faster-RCNN de-
tection, IFC-compatible out-
put

IoU: 0.81 (mask), 0.8 (vec-
torized), SOTA on Cubi-
Casa5k

Limited room annotations,
assumed height estima-
tion, lack of public code

Not specified

[3] Generate interactive 3D
virtual house from single
floorplan for VR experi-
ence

U2-Net segmentation, 3D
mesh construction, VR
framework with furniture
library

15s generation time, 70k
iterations training (55h),
interactive VR immersion

Limited furniture types,
manual labeling, estimated
window properties

i7-10750H, 16GB RAM,
RTX 2070, HTC Vive Pro

[4] Convert 2D floor plans to
interactive 3D models us-
ing image processing and
AR

Image processing for wall
detection, Unity3D + Vufo-
ria for AR rendering, An-
droid GUI

76.70% accuracy in wall
recognition and recon-
struction

Accuracy depends on plan
clarity, limited to plan
complexity

Android (Flutter 3.3.7),
Node.js on Amazon EC2,
Python 3.10

[11] Synthesize realistic 3D
towns from single top-
down image

Modular decomposition,
pretrained rectified flow
transformer, landmark ini-
tialization, masked latent
inpainting

Geometry win rate: 68.5-
80% (human), 82-92%
(GPT-4o), Texture win
rate: up to 92.3%

Duplicated façades, coarse
depth maps, lacks scene-
level fine-tuning

NVIDIA RTX A5000
(24GB), Trellis, Flo-
rence2, SAM2

[17] Personalized LLM interior
designer for 3D room lay-
outs from natural language

I-Design uses Multi-agent
reasoning (AutoGen), pro-
cedural scene graph, VLM
evaluation, Objaverse re-
trieval

0% out-of-bound objects
vs 57.6% baseline, GPT-
4V rating: 5.7/10 vs 4.8,
3x more objects placed

Dense scene failures, as-
set mismatches, lacks re-
texturing, slow backtrack-
ing

GPT-4, AutoGen, Open-
Shape, CLIP, Blender

[21] Unsupervised single-view
3D scene extrapolation
with diffusion models

Conditional diffusion with
corrupted/ground-truth
RGBD, anchored condition-
ing, lookahead conditioning

PSNR: 23.56, SSIM: 0.68,
2x COLMAP points (3124
vs 1476), consistent fly-
through videos

DiffDreamer has faced
Slow inference, limited
content diversity, struggles
with complex terrains

2× NVIDIA RTX 8000,
PyTorch3D, Palette, 1
week training

[20] Reconstruct outdoor build-
ings as planar graphs from
single RGB image

Faster-RCNN corner detec-
tion, graph formulation, con-
volutional message passing,
edge classification

Region F1-score: 54.2,
outperforms PolyRNN++,
handles non-Manhattan
geometries

Memory intensive, limited
iterations (T=3), fails on
large buildings

Conv-MPN experiment
was built on 2× NVIDIA
TitanX (24GB), PyTorch,
DRN, 20-40h training

[15] Reconstruct 3D voxel ob-
jects from single/multiple
uncalibrated images

Parallel processing,
weighted multi-scale fusion,
sigmoid voxel occupancy,
U-Net refiner

Pix2Vox++ scored
ShapeNet IoU: 0.670 (1
view), 0.843 (8 views), 7x
faster than 3D-R2N2

Memory intensive at high
resolution, no camera pa-
rameters, poor generaliza-
tion

NVIDIA GTX 1080 Ti,
PyTorch, 15 servers for
training

Real-world deployment reveals significant barriers limiting widespread adoption. Computational requirements
present substantial obstacles, with methods like DiffDreamer [21] experienced ”slow inference” and demanding high-
end GPU configurations shown in Table 1, significantly increasing deployment costs. Manual intervention require-
ments further constrain deployment, as 3DPlanNet’s [2] commercial use required manual correction of ”insufficient
parts” despite 95% wall accuracy, while Plan2Scene [1] faced semantic segmentation errors requiring human inter-
vention for production use.

7. Future Research Directions

As machine learning continues to evolve, emerging techniques present promising avenues to overcome current
limitations in 2D-to-3D floorplan conversion.
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7.1. Diffusion Models for 3D Scene Generation

Diffusion models demonstrate remarkable capabilities in generating consistent 3D scenes from single-view inputs.
DiffDreamer showed how conditional diffusion models enable unsupervised 3D scene extrapolation with improved
neural field reconstructions [21]. However, computational intensity remains a barrier for real-time architectural ap-
plications, necessitating lightweight architectures for practical deployment.

7.2. Explainable AI for Architectural Design Transparency

Explainable AI (XAI) techniques can significantly enhance architect-designer workflows by providing visual expla-
nations of spatial reasoning decisions in 2D-to-3D conversion. XAI methods could generate attention maps highlight-
ing critical floorplan features, visualize reconstruction confidence scores, and explain why specific 3D interpretations
were chosen over alternatives [22]. This transparency would enable architects to validate model decisions, identify
potential errors, and iteratively refine designs with greater confidence in automated reconstruction tools.

7.3. Foundation Models and Vision-Language Integration

Foundation models such as Florence-2 and GPT-4V enabled integration of spatial understanding with semantic
reasoning for 3D reconstruction [23, 24]. The I-Design framework demonstrated multi-agent LLM systems for pro-
cedural 3D room layout generation from natural language inputs [17]. This approach could revolutionize architectural
workflows by enabling conversational design interfaces and supporting diverse architectural styles through pretrained
knowledge.

7.4. Few-Shot Learning for Data-Efficient Reconstruction

Few-shot learning techniques reduce reliance on large annotated datasets by enabling adaptation to new floorplan
styles with minimal supervision [25]. Zheng et al.’s modular approach to 3D town synthesis illustrated benefits of
pretraining transformer models on limited domain-specific data [11]. This strategy is particularly valuable for regions
with scarce architectural datasets and non-standard building conventions.

7.5. Neuro-Symbolic Approaches for Constraint Satisfaction

Neuro-symbolic systems can integrate building code compliance checking with generative reconstruction
pipelines [26]. Recent research demonstrates AI systems that analyze generated layouts for regulatory violations, such
as excessive Maximum Travel Distances (MTD), and trigger automatic redesign when non-compliance is detected.
This post-generation validation approach combines neural flexibility in 3D generation with symbolic reasoning for
code compliance, ensuring reconstructed models meet both aesthetic and regulatory requirements.

8. Concluding Remarks

This paper has presented a comprehensive review of machine learning techniques for converting 2D floorplan
images into 3D models, highlighting their applications, strengths, and limitations. CNNs have proven effective for
structural feature extraction and semantic segmentation, while GANs excelled in producing high-fidelity textures
and volumetric reconstructions. Transformer-based architectures and hybrid methods further enhanced global con-
text modeling and flexibility in handling diverse layouts. Despite these advancements, significant challenges remain,
including limited availability of large-scale annotated datasets, computational complexity, and difficulties in ensur-
ing semantic consistency across varied architectural styles. Emerging techniques such as diffusion models, founda-
tion models, and neuro-symbolic AI offer promising directions to address these challenges and enable more robust,
scalable, and user-centric 3D reconstruction pipelines. Future work should focus on developing data-efficient and
lightweight architectures that support real-time applications, facilitating broader adoption in real estate visualization,
virtual reality, and smart urban planning.
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